Гаркунов Д.Н. Триботехника. Износ и безызносность. Страница 229

ем многократных растягивающих напряжений происходят микроразрывы, часть материала с поверхности уносится с образованием волнообразного рельефа из выступов и впадин в направлении, перпендикулярном движению абразива (рис. 7.3) [22]. Такая текстура наблюдалась рядом исследователей, например Ш.М. Биликом [2].

В дальнейшем под влиянием переменных растягивающих напряжений срабатываются первичные выступы неровностей, но волновой рельеф поверхности сохраняется.

Если в высокоэластичных полимерах изнашивание по своей природе является фрикционным (повреждение обусловлено силами трения), то изнашивание более жестких и хрупких полимеров происходит в основном в результате микрорезания. На интенсивность изнашивания сильно влияет структура материала. При трении с граничной смазкой преобладание кристаллических областей в полимере над аморфными обеспечивает более высокую его твердость и износостойкость. Между тем увеличение степени кристаллизации ухудшает стойкость при абразивном изнашивании. Дело в том, что даже при повышении твердости за счет увеличения кристаллических областей она остается в несколько раз ниже твердости абразива, поэтому фактор повышения твердости оказывается неэффективным. Уменьшение эластичности полимера, по мнению A.M. Когана и Д.Я. Соболева, создает более благоприятные условия для начала срезания абразивными частицами микрообъемов материала, при срезе отделяются большие объемы, чем при фрикционной природе разрушения поверхности [12].

Сопротивление срезу недостаточно для характеристики стойкости полимера абразивному изнашиванию. Полиметилметакрилат, более прочный на срез в сравнении с капроном и полиамидом П-68, оказывается менее износостойким. Помимо сопротивления срезу износостойкость полимера определяется вероятностью начала среза вдавившимся в поверхность абразивом. Эта вероятность уменьшается с повышением эластичности и численно характеризуется показателями упругости материала.